[PDF] Gene Therapy for Von Willebrand Disease by Marinee Chuah, Inge Petrus, Thierry VandenDriessche · 10.1002/9781444329926.ch20 · OA.mg (2024)

DOI: 10.1002/9781444329926.ch20

OpenAccess: Closed

This work is not Open Acccess. We may still have a PDF, if this is the case there will be a green box below.

Marinee Chuah,Inge Petrus,Thierry VandenDriessche

Von Willebrand disease

Genetic enhancement

Medicine

2011

Chapter 20 Gene Therapy for Von Willebrand Disease Marinee K. L. Chuah PhD, Marinee K. L. Chuah PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium Faculty of Medicine and Pharmacy, University Hospital Campus Jette, Free University of Brussels (VUB), Brussels, BelgiumSearch for more papers by this authorInge Petrus PhD, Inge Petrus PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, BelgiumSearch for more papers by this authorThierry VandenDriessche PhD, Thierry VandenDriessche PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium Faculty of Medicine and Pharmacy, University Hospital Campus Jette, Free University of Brussels (VUB), Brussels, BelgiumSearch for more papers by this author Marinee K. L. Chuah PhD, Marinee K. L. Chuah PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium Faculty of Medicine and Pharmacy, University Hospital Campus Jette, Free University of Brussels (VUB), Brussels, BelgiumSearch for more papers by this authorInge Petrus PhD, Inge Petrus PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, BelgiumSearch for more papers by this authorThierry VandenDriessche PhD, Thierry VandenDriessche PhD Flanders Institute for Biotechnology (VIB), Vesalius Research Center, University of Leuven, Leuven, Belgium Faculty of Medicine and Pharmacy, University Hospital Campus Jette, Free University of Brussels (VUB), Brussels, BelgiumSearch for more papers by this author Book Editor(s):Augusto B. Federici MD, Augusto B. Federici MD Division of Hematology and Transfusion Medicine, L. Sacco University Hospital, Department of Internal Medicine, University of Milan, Milan, ItalySearch for more papers by this authorChristine A. Lee MA, MD, DSc (Med), FRCP, FRCPath, FRCOGad eundem, Christine A. Lee MA, MD, DSc (Med), FRCP, FRCPath, FRCOGad eundem University of London, London, UKSearch for more papers by this authorErik E. Berntorp MD, PhD, Erik E. Berntorp MD, PhD Malmö Centre for Thrombosis and Haemostasis, Lund University, Skåne University Hospital, Malmö, SwedenSearch for more papers by this authorDavid Lillicrap MD, David Lillicrap MD Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, ON, CanadaSearch for more papers by this authorRobert R. Montgomery MD, Robert R. Montgomery MD Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USASearch for more papers by this author First published: 21 March 2011 https://doi.org/10.1002/9781444329926.ch20Citations: 2 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary von Willebrand disease (VWD) is an attractive target disease for gene therapy. Both ex vivo and direct in vivo gene therapy approaches are being developed based on viral or non-viral gene delivery vectors. Since endothelial cells and megakaryocytes and their platelet progeny normally express von Willebrand factor (VWF), they constitute logical targets for gene therapy of VWD. Indeed, gene transfer into endothelial cells from dogs suffering from type 3 VWD using lentiviral vectors can result in de novo expression of adequately processed, fully functional VWF. However, even ectopic VWF expression in hepatocytes results in functional VWF that can correct the bleeding diathesis in VWF-deficient VWD mouse models. Despite this progress and early proof-of-concept studies, there is still a need to develop robust and safe gene therapy approaches for VWD, which would need to be validated in large animal models before moving forward with human clinical trials. References Sadler JE, Mannucci PM, Berntorp E, et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost 2000; 84: 160–74. 10.1055/s-0037-1613992 CASPubMedWeb of Science®Google Scholar Ruggeri ZM. Von Willebrand factor. Curr Opin Hematol 2003; 10: 142–9. 10.1097/00062752-200303000-00008 CASPubMedWeb of Science®Google Scholar Kaufmann JE, Oksche A, Wollheim CB, Gunther G, Rosenthal W, Vischer UM. Vasopressin - induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 2000; 106: 107–16. 10.1172/JCI9516 CASPubMedWeb of Science®Google Scholar Mannucci PM, Bettega D, Cattaneo M. Patterns of development of tachyphylaxis in patients with haemophilia and von Willebrand disease after repeated doses of desmopressin (DDAVP). Br J Haematol 1992; 82: 87–93. 10.1111/j.1365-2141.1992.tb04598.x CASPubMedWeb of Science®Google Scholar Bond L, Bevan D. Myocardial infarction in a patient with hemophilia treated with DDAVP. N Engl J Med 1988; 318: 121. 10.1056/NEJM198801143180215 CASPubMedWeb of Science®Google Scholar Byrnes JJ, Larcada A, Moake JL. Thrombosis following desmopressin for uremic bleeding. Am J Hematol 1988; 28: 63–5. 10.1002/ajh.2830280115 CASPubMedWeb of Science®Google Scholar Aiuti A, Slavin S, Aker M, et al. Correction of ADA - SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–13. 10.1126/science.1070104 CASPubMedWeb of Science®Google Scholar Aiuti A, Vai S, Mortellaro A, et al. Immune reconstitution in ADA - SCID after PBL gene therapy and discontinuation of enzyme replacement. Nat Med 2002; 8: 423–5. 10.1038/nm0502-423 CASPubMedWeb of Science®Google Scholar Aiuti A, Cattaneo F, Galimberti S, et al. Gene therapy for immunodeficiency due to adenosine deaminase defi- ciency. N Engl J Med 2009; 360: 447–58. 10.1056/NEJMoa0805817 CASPubMedWeb of Science®Google Scholar Kohn DB, Candotti F. Gene therapy fulfilling its promise. N Engl J Med 2009; 360: 518–21. 10.1056/NEJMe0809614 CASPubMedWeb of Science®Google Scholar Cavazzana - Calvo M, Hacein - Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodefi ciency (SCID) - X1 disease. Science 2000; 288: 669–72. 10.1126/science.288.5466.669 CASPubMedWeb of Science®Google Scholar Ott MG, Schmidt M, Schwarzwaelder K, et al. Correction of X - linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1 - EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–9. 10.1038/nm1393 CASPubMedWeb of Science®Google Scholar Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–9. 10.1056/NEJMoa0802268 CASPubMedWeb of Science®Google Scholar Kaplitt MG, Feigin A, Tang C, et al. Safety and toleraesybility of gene therapy with an adeno - associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–105. 10.1016/S0140-6736(07)60982-9 CASPubMedWeb of Science®Google Scholar Hacein - Bey - Abina S, Von Kalle C, Schmidt M, et al. LMO2 - associated clonal T cell proliferation in two patients after gene therapy for SCID - X1. Science 2003; 302: 415–19. 10.1126/science.1088547 CASPubMedWeb of Science®Google Scholar Manno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV - Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342–7. 10.1038/nm1358 CASPubMedWeb of Science®Google Scholar Mingozzi F, Maus MV, Hui DJ, et al. CD8(+) T - cell responses to adeno - associated virus capsid in humans. Nat Med 2007; 13: 419–22. 10.1038/nm1549 CASPubMedWeb of Science®Google Scholar Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003; 80: 148–58. 10.1016/j.ymgme.2003.08.016 CASPubMedWeb of Science®Google Scholar Chang AH, Stephan MT, Lisowski L, Sadelain M. Erythroid - specific human factor IX delivery from in vivo selected hematopoietic stem cells following nonmyeloablative conditioning in hemophilia B mice. Mol Ther 2008; 16: 1745–52. 10.1038/mt.2008.161 CASPubMedWeb of Science®Google Scholar Kuramoto K, Follman D, Hematti P, et al. The impact of low - dose busulfan on clonal dynamics in nonhuman primates. Blood 2004; 104: 1273–80. 10.1182/blood-2003-08-2935 CASPubMedWeb of Science®Google Scholar Moayeri M, Hawley TS, Hawley RG. Correction of murine hemophilia A by hematopoietic stem cell gene therapy. Mol Ther 2005; 12: 1034–42. 10.1016/j.ymthe.2005.09.007 CASPubMedWeb of Science®Google Scholar Thorrez L, Shansky J, Wang L, et al. Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials 2008; 29: 75–84. 10.1016/j.biomaterials.2007.09.014 CASPubMedWeb of Science®Google Scholar Thorrez L, Vandenburgh H, Callewaert N, et al. Angiogenesis enhances factor IX delivery and persistence from retrievable human bioengineered muscle implants. Mol Ther 2006; 14: 442–51. 10.1016/j.ymthe.2006.03.019 CASPubMedWeb of Science®Google Scholar Matsui H, Shibata M, Brown B, et al. Ex vivo gene therapy for hemophilia A that enhances safe delivery and sustained in vivo factor VIII expression from lentivirally engineered endothelial progenitors. Stem Cells 2007; 25: 2660–9. 10.1634/stemcells.2006-0699 CASPubMedWeb of Science®Google Scholar Denis C, Methia N, Frenette PS, et al. A mouse model of severe von Willebrand disease: defects in hemostasis and thrombosis. Proc Natl Acad Sci U S A 1998; 95: 9524–9. 10.1073/pnas.95.16.9524 CASPubMedWeb of Science®Google Scholar De Meyer SF, Vanhoorelbeke K, Chuah MK, et al. Phenotypic correction of von Willebrand disease type 3 blood - derived endothelial cells with lentiviral vectors expressing von Willebrand factor. Blood 2006; 107: 4728–36. 10.1182/blood-2005-09-3605 CASPubMedWeb of Science®Google Scholar Nichols TC, Bellinger DA, Reddick RL, et al. The roles of von Willebrand factor and factor VIII in arterial thrombosis: studies in canine von Willebrand disease and hemophilia A. Blood 1993; 81: 2644–51. CASPubMedWeb of Science®Google Scholar Mendolicchio GL, Ruggeri ZM. New perspectives on von Willebrand factor functions in hemostasis and thrombosis. Semin Hematol 2005; 42: 5–14. 10.1053/j.seminhematol.2004.09.006 CASPubMedWeb of Science®Google Scholar Miller AD. Retroviral vectors. Curr Top Microbiol Immunol 1992; 158: 1–24. CASPubMedWeb of Science®Google Scholar Miller AD, Miller DG, Garcia JV, Lynch CM. Use of retroviral vectors for gene transfer and expression. Methods Enzymol 1993; 217: 581–99. 10.1016/0076-6879(93)17090-R CASPubMedWeb of Science®Google Scholar Naldini L, Blomer U, Gage FH, Trono D, Verma IM. Efficient transfer, integration, and sustained long - term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 1996; 93: 11382–8. 10.1073/pnas.93.21.11382 CASPubMedWeb of Science®Google Scholar Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–7. 10.1126/science.272.5259.263 CASPubMedWeb of Science®Google Scholar Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641–9. 10.1128/JVI.71.9.6641-6649.1997 CASPubMedWeb of Science®Google Scholar Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871–5. 10.1038/nbt0997-871 CASPubMedWeb of Science®Google Scholar Sinn PL, Sauter SL, McCray PB, Jr. Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors–design, biosafety, and production. Gene Ther 2005; 12: 1089–98. 10.1038/sj.gt.3302570 CASPubMedWeb of Science®Google Scholar Zufferey R, Donello JE, Trono D, Hope TJ. Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 1999; 73: 2886–92. 10.1128/JVI.73.4.2886-2892.1999 CASPubMedWeb of Science®Google Scholar Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV - 1 pol sequences. Nat Genet 2000; 25: 217–22. 10.1038/76095 CASPubMedWeb of Science®Google Scholar VandenDriessche T, Thorrez L, Naldini L, et al. Lentiviral vectors containing the human immunodeficiency virus type - 1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen - presenting cells in vivo. Blood 2002; 100: 813–22. 10.1182/blood.V100.3.813 CASPubMedWeb of Science®Google Scholar Montgomery RR. A package for VWD endothelial cells. Blood 2006; 107: 4580–1. 10.1182/blood-2006-04-012195 CASWeb of Science®Google Scholar Hacein - Bey - Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus - mediated gene therapy of SCID - X1. J Clin Invest 2008; 118: 3132–42. 10.1172/JCI35700 CASPubMedWeb of Science®Google Scholar Zufferey R, Dull T, Mandel RJ, et al. Self - inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–80. CASPubMedWeb of Science®Google Scholar Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F. HIV - 1 integration in the human genome favors active genes and local hotspots. Cell 2002; 110: 521–9. 10.1016/S0092-8674(02)00864-4 CASPubMedWeb of Science®Google Scholar Trono D. Virology. Picking the right spot. Science 2003; 300: 1670–1. 10.1126/science.1086238 CASPubMedWeb of Science®Google Scholar Baum C. Insertional mutagenesis in gene therapy and stem cell biology. Curr Opin Hematol 2007; 14: 337–42. 10.1097/MOH.0b013e3281900f01 CASPubMedWeb of Science®Google Scholar Montini E, Cesana D, Schmidt M, et al. Hematopoietic stem cell gene transfer in a tumor - prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 2006; 24: 687–96. 10.1038/nbt1216 CASPubMedWeb of Science®Google Scholar Cornils K, Lange C, Schambach A, et al. Stem cell marking with promotor - deprived self - inactivating retroviral vectors does not lead to induced clonal imbalance. Mol Ther 2009; 17: 131–43. 10.1038/mt.2008.238 CASPubMedWeb of Science®Google Scholar Berkner KL. Development of adenovirus vectors for the expression of heterologous genes. Biotechniques 1988; 6: 616–29. 10.1038/nbt0588-616 CASPubMedWeb of Science®Google Scholar Chuah MK, Schiedner G, Thorrez L, et al. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high - capacity adenoviral vectors. Blood 2003; 101: 1734–43. 10.1182/blood-2002-03-0823 CASPubMedWeb of Science®Google Scholar Brown BD, Shi CX, Powell S, Hurlbut D, Graham FL, Lillicrap D. Helper - dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A. Blood 2004; 103: 804–10. 10.1182/blood-2003-05-1426 CASPubMedWeb of Science®Google Scholar Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther 2008; 16: 16–29. 10.1038/sj.mt.6300321 CASPubMedWeb of Science®Google Scholar Brunetti - Pierri N, Stapleton GE, Law M, et al. Efficient, long - term hepatic gene transfer using clinically relevant HDAd doses by balloon occlusion catheter delivery in nonhuman primates. Mol Ther 2009; 17: 327–33. 10.1038/mt.2008.257 CASPubMedWeb of Science®Google Scholar Xiao X, Li J, Samulski RJ. Efficient long - term gene transfer into muscle tissue of immunocompetent mice by adeno - associated virus vector. J Virol 1996; 70: 8098–108. CASPubMedWeb of Science®Google Scholar Kaplitt MG, Leone P, Samulski RJ, et al. Long - term gene expression and phenotypic correction using adeno - associated virus vectors in the mammalian brain. Nat Genet 1994; 8: 148–54. 10.1038/ng1094-148 CASPubMedWeb of Science®Google Scholar Snyder RO, Miao CH, Patijn GA, et al. Persistent and therapeutic concentrations of human factor IX in mice after hepatic gene transfer of recombinant AAV vectors. Nat Genet 1997; 16: 270–6. 10.1038/ng0797-270 CASPubMedWeb of Science®Google Scholar Chao H, Sun L, Bruce A, Xiao X, Walsh CE. Expression of human factor VIII by splicing between dimerized AAV vectors. Mol Ther 2002; 5: 716–22. 10.1006/mthe.2002.0607 CASPubMedWeb of Science®Google Scholar Allocca M, Doria M, Petrillo M, et al. Serotype - dependent packaging of large genes in adeno - associated viral vectors results in effective gene delivery in mice. J Clin Invest 2008; 118: 1955–64. 10.1172/JCI34316 CASPubMedWeb of Science®Google Scholar Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 2009; 487: 111–46. 10.1007/978-1-60327-547-7_6 CASPubMedGoogle Scholar Zayed H, Izsvak Z, Walisko O, Ivics Z. Development of hyperactive sleeping beauty transposon vectors by mutational analysis. Mol Ther 2004; 9: 292–304. 10.1016/j.ymthe.2003.11.024 CASPubMedWeb of Science®Google Scholar Chuah M, Mates L, Belay E, et al. Molecular evolution of a novel hyperactive sleeping beauty transposase enables robust stable gene transfer in vertebrates. Nat Genet 2009; 41: 753–61. 10.1038/ng.343 CASPubMedWeb of Science®Google Scholar Knapp JE, Liu D. Hydrodynamic delivery of DNA. Methods Mol Biol 2004; 245: 245–50. CASPubMedGoogle Scholar Kamimura K, Suda T, Xu W, Zhang G, Liu D. Image - guided, lobe - specific hydrodynamic gene delivery to swine liver. Mol Ther 2009; 17: 491–9. 10.1038/mt.2008.294 CASPubMedWeb of Science®Google Scholar Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol 2005; 23: 967–73. 10.1038/nbt1125 CASPubMedWeb of Science®Google Scholar Lombardo A, Genovese P, Beausejour CM, et al. Gene editing in human stem cells using zinc finger nucleases and integrase - defective lentiviral vector delivery. Nat Biotechnol 2007; 25: 1298–306. 10.1038/nbt1353 CASPubMedWeb of Science®Google Scholar Chao H, Mansfield SG, Bartel RC, et al. Phenotype correction of hemophilia A mice by spliceosome - mediated RNA trans - splicing. Nat Med 2003; 9: 1015–19. 10.1038/nm900 CASPubMedWeb of Science®Google Scholar White SJ, Nicklin SA, Buning H, et al. Targeted gene delivery to vascular tissue in vivo by tropism - modified adeno - associated virus vectors. Circulation 2004; 109: 513–19. 10.1161/01.CIR.0000109697.68832.5D CASPubMedWeb of Science®Google Scholar Work LM, Buning H, Hunt E, et al. Vascular bed - targeted in vivo gene delivery using tropism - modified adeno - associated viruses. Mol Ther 2006; 13: 683–93. 10.1016/j.ymthe.2005.11.013 CASPubMedWeb of Science®Google Scholar Nettelbeck DM, Miller DW, Jerome V, et al. Targeting of adenovirus to endothelial cells by a bispecific single - chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther 2001; 3: 882–91. 10.1006/mthe.2001.0342 CASPubMedWeb of Science®Google Scholar Lin Y, Chang L, Solovey A, Healey JF, Lollar P, Hebbel RP. Use of blood outgrowth endothelial cells for gene therapy for hemophilia A. Blood 2002; 99: 457–62. 10.1182/blood.V99.2.457 CASPubMedWeb of Science®Google Scholar Milbauer LC, Enenstein JA, Roney M, et al. Blood outgrowth endothelial cell migration and trapping in vivo: a window into gene therapy. Transl Res 2009; 153: 179–89. 10.1016/j.trsl.2008.12.009 CASPubMedWeb of Science®Google Scholar Haberichter SL, Merricks EP, Fahs SA, Christopherson PA, Nichols TC, Montgomery RR. Re - establishment of VWF - dependent Weibel–Palade bodies in VWD endothelial cells. Blood 2005; 105: 145–52. 10.1182/blood-2004-02-0464 CASPubMedWeb of Science®Google Scholar Van Damme A, Thorrez L, Ma L, et al. Efficient lentiviral transduction and improved engraftment of human bone marrow mesenchymal cells. Stem Cells 2006; 24: 896–907. 10.1634/stemcells.2003-0106 CASPubMedWeb of Science®Google Scholar Shi Q, Fahs SA, Kuether EL, Cooley BC, Weiler H, Montgomery RR. Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. Blood 6 July 2010. [Epub ahead of print] 10.1182/blood-2010-03-272419 Web of Science®Google Scholar Shahani T, Lavend'homme R, Luttun A, Saint - Remy JM, Peerlinck K, Jacquemin M. Activation of human endothelial cells from specific vascular beds induces the release of a FVIII storage pool. Blood 2010; 115: 4902–9. 10.1182/blood-2009-07-232546 CASPubMedWeb of Science®Google Scholar Rosenberg JB, Greengard JS, Montgomery RR. Genetic induction of a releasable pool of factor VIII in human endothelial cells. Arterioscler Thromb Vasc Biol 2000; 20: 2689–95. 10.1161/01.ATV.20.12.2689 CASPubMedWeb of Science®Google Scholar Yarovoi HV, Kufrin D, Eslin DE, et al. Factor VIII ectopically expressed in platelets: efficacy in hemophilia A treatment. Blood 2003; 102: 4006–13. 10.1182/blood-2003-05-1519 CASPubMedWeb of Science®Google Scholar Shi Q, Wilcox DA, Morateck PA, Fahs SA, Kenny D, Montgomery RR. Targeting platelet GPIbalpha transgene expression to human megakaryocytes and forming a complete complex with endogenous GPIbbeta and GPIX. J Thromb Haemost 2004; 2: 1989–97. 10.1111/j.1538-7836.2004.00961.x CASPubMedWeb of Science®Google Scholar van den Biggelaar M, Meijer AB, Voorberg J, Mertens K. Intracellular cotrafficking of factor VIII and von Willebrand factor type 2N variants to storage organelles. Blood 2009; 113: 3102–9. 10.1182/blood-2008-05-159699 CASPubMedWeb of Science®Google Scholar Haberichter SL. VWF and FVIII: the origins of a great friendship. Blood 2009; 113: 2873–4. 10.1182/blood-2009-01-199844 CASPubMedWeb of Science®Google Scholar Laje P, Shang D, Cao W, et al. Correction of murine ADAMTS13 deficiency by hematopoietic progenitor cell - mediated gene therapy. Blood 2009; 113: 2172–80. 10.1182/blood-2008-08-173021 CASPubMedWeb of Science®Google Scholar VandenDriessche T, Vanslembrouck V, Goovaerts I, et al. Long - term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII - deficient mice. Proc Natl Acad Sci USA 1999; 96: 10379–84. 10.1073/pnas.96.18.10379 CASPubMedWeb of Science®Google Scholar Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L. Targeting lentiviral vector expression to hepatocytes limits transgene - specific immune response and establishes long - term expression of human antihemophilic factor IX in mice. Blood 2004; 103: 3700–9. 10.1182/blood-2003-09-3217 CASPubMedWeb of Science®Google Scholar Snyder RO, Miao C, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant adeno - associated viral vectors. Nat Med 1999; 5: 64–70. 10.1038/4751 CASPubMedWeb of Science®Google Scholar Ye P, Thompson AR, Sarkar R, et al. Naked DNA transfer of Factor VIII induced transgene - specific, species - independent immune response in hemophilia A mice. Mol Ther 2004; 10: 117–26. 10.1016/j.ymthe.2004.04.009 CASPubMedWeb of Science®Google Scholar Pergolizzi RG, Jin G, Chan D, et al. Correction of a murine model of von Willebrand disease by gene transfer. Blood 2006; 108: 862–9. 10.1182/blood-2005-06-2330 CASPubMedWeb of Science®Google Scholar Lenting PJ, de Groot PG, De Meyer SF, et al. Correction of the bleeding time in von Willebrand factor (VWF) - deficient mice using murine VWF. Blood 2007; 109: 2267–8. 10.1182/blood-2006-10-054718 CASPubMedWeb of Science®Google Scholar De Meyer SF, Vandeputte N, Pareyn I, et al. Restoration of plasma von Willebrand factor deficiency is sufficient to correct thrombus formation after gene therapy for severe von Willebrand disease. Arterioscler Thromb Vasc Biol 2008; 28: 1621–6. 10.1161/ATVBAHA.108.168369 CASPubMedWeb of Science®Google Scholar Marx I, Lenting PJ, Adler T, Pendu R, Christophe OD, Denis CV. Correction of bleeding symptoms in von Willebrand factor - deficient mice by liver - expressed von Willebrand factor mutants. Arterioscler Thromb Vasc Biol 2008; 28: 419–24. 10.1161/ATVBAHA.107.159442 CASPubMedWeb of Science®Google Scholar Citing Literature Von Willebrand Disease: Basic and Clinical Aspects ReferencesRelatedInformation

Loading...

    Cite this:

  • MLA
  • APA
  • Chicago
  • IEEE
  • Harvard
  • BibTeX

Generate Citation

Powered by Citationsy*

    Gene Therapy for Von Willebrand Disease

    ” is a paper by

    Marinee Chuah

    Inge Petrus

    Thierry VandenDriessche

    published

    in

    2011

    .

    It has an Open Access status of “closed”.

    You can read and download a PDF Full Text of this paper here.

    [PDF] Gene Therapy for Von Willebrand Disease by  Marinee Chuah, Inge Petrus, Thierry VandenDriessche · 10.1002/9781444329926.ch20 · OA.mg (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Carlyn Walter

    Last Updated:

    Views: 6729

    Rating: 5 / 5 (70 voted)

    Reviews: 93% of readers found this page helpful

    Author information

    Name: Carlyn Walter

    Birthday: 1996-01-03

    Address: Suite 452 40815 Denyse Extensions, Sengermouth, OR 42374

    Phone: +8501809515404

    Job: Manufacturing Technician

    Hobby: Table tennis, Archery, Vacation, Metal detecting, Yo-yoing, Crocheting, Creative writing

    Introduction: My name is Carlyn Walter, I am a lively, glamorous, healthy, clean, powerful, calm, combative person who loves writing and wants to share my knowledge and understanding with you.